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Getting started The problem

The question
Given a finitely generated sub(semi)group X of Matn(C), what is
its Zariski closure in Cn2?

What are: dimension, degree, number of
irreducible components, . . . ?

The motivation
• Polynomial equations provide the strongest algebraic
invariants.
• Membership problem: is x ∈ X? If x /∈ X, then x /∈ X.
• Dynamical systems (= automata, affine programs).

Theorem: X is computable.
• X ⊆ GLn(C): Derksen-Jeandel-Koiran (2005),

Kauers-Zimmermann (2008)
• general: Hrushovski-Ouaknine-Pouly-Worrel (2018)
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Warming up An example

We want to compute the algebraic closure of X in C4 where

M = diag(−1, 1/5) =
(
−1 0
0 1/5

)
and X =

{
Mk | k ∈ Z

}
.

We compute some powers:

M0 = diag(1, 1), M1 = diag(−1, 1/5),
M2 = diag(1, 1/25), M3 = diag(−1, 1/(125)),
M−2 = diag(1, 25), M−1 = diag(−1, 5).

Rewrite as:

X =
{

diag(1, 52k) | k ∈ Z
}

︸ ︷︷ ︸
X1

∪
{

diag(−1, 52k+1) | k ∈ Z
}

︸ ︷︷ ︸
X−1

.
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Warming up An example

Recall:

X =
{

diag(1, 52k) | k ∈ Z
}

︸ ︷︷ ︸
X1

∪
{

diag(−1, 52k+1) | k ∈ Z
}

︸ ︷︷ ︸
X−1

.

Then we get:

X = X1 ∪X−1 =
{(

x11 x12
x21 x22

)
| x12 = x21 = 0, x11 = ±1, x22 ∈ C

}

where the defining ideal is:

I = (x2
11 − 1, x12, x21)

⊆ C[x11, x12, x21, x22]
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The basics Setup

• M ∈ Matn(C)
• G = 〈λ ∈ C∗ | ker(M − λ Idn) 6= 0〉 ∼= Gtor ⊕ Zrk(G)

• X>0 - semigroup generated by M

X>0 =
{
Mk | k positive integer

}
• X - group generated by M ∈ GLn(C)

X = 〈M〉 =
{
Mk | k integer

}
• S - Zariski closure of S ⊆ Matn(C) in Cn2

Our goal is to determine algebro-geometric properties of
X or X>0.

Toric varieties from cyclic matrix groups Mima Stanojkovski



The basics Some properties

Lemma
If M is invertible, then X = X>0.

Recall: our warming-up example
with M = diag(−1, 1/5).

For M invertible, write M ∼MsMu with Ms diagonal and Mu

unipotent (Jordan normal form). Define then

Xs = {Mk
s | k ∈ Z} and Xu = {Mk

u | k ∈ Z}

Lemma
If M is invertible, then dimX = dimXs + dimXu and
irr(X) = irr(Xs).
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Results Invertible matrices

Theorem
Assume M ∈ GLn(C). Then irr(X) = |Gtor| and each irreducible
component of X is a toric variety of dimension

dimX =
{

rk(G) if M is diagonalizable,
rk(G) + 1 otherwise.

Example
Let us look again at the matrix

M =
(
−1 0
0 1/5

)
.

Then M is diagonalizable and G = 〈−1, 1/5〉 ∼= Z/(2)⊕ Z. We
recover our two lines in C4.
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Results Invertible matrices

Idea of proof
1. M = Ms, Gtor = 1 ⇒ X toric and dim(X) = rk(G).

If M = diag(3, 1/3, 9), then G = 〈3, 1/3, 9〉 = 〈3〉 ∼= Z.
• Get matrix of exponents: A = (1 − 1 2) ∈ Matrk(G)×n(C).
• Compute kernel: kerZ(A) = Z(1, 1, 0)⊕ Z(−2, 0, 1).
• Derive equations: xy = 1 and x2 = z.

2. M = Ms ⇒ X has |Gtor| toric comp.s with dim = rk(G).

For q = |Gtor| define Xi =
{
Mkq+i | k ∈ Z

}
. Then

X = X0 ∪ . . . ∪Xq−1.

Conclude by observing

X0 ←→M q ←→ Gq = 〈xq | x ∈ G〉 torsion-free.
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Results Invertible matrices

Idea of proof
3. Mu 6= 1 ⇒ Xu is a degree m− 1 rational normal curve where
m is the biggest size of a Jordan block of M .

Consider the matrix

M =

1 1 0
0 1 1
0 0 1

 Mα =

1 α α(α− 1)/2
0 1 α
0 0 1


satisfying xii = 1, x12 = x23, xi>j = 0. Define now

C→ C3, t 7→ (1, t, t(t− 1)/2) ∼ (1, t, t2).

4. Conclude using lemmas.
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Results Comments

Why is this exciting?
• Toric varietis are very well-understood and have a pleasant
combinatorial structure.

We can also realize each affine toric variety this way!
• We can read some geometric properties of X from the

Z-module structure of G.

Example
Let d be a non-negative integer and define

M =
(

2 0
0 2d

)
∈ C2.

Then X is a smooth irreducible affine curve of degree d and
equation y = xd. It is rational and, when d ≥ 3, singular at infinity.
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Results Any matrix

The last theorem can be generalized to non-necessarily invertible
matrices.

Example
Let M ∈ Matn(C) be defined by

M =

0 1 0
0 0 0
0 0 2

 M2 =

0 0 0
0 0 0
0 0 4

 = diag(0, 0, 4).

Then X>0 = {M}
·
∪ {diag(0, 0, 2k) | k ≥ 2}. Since the closure of

{diag(0, 0, 2k) | k ≥ 2} has dimension 1, we get that

X>0 = {M}
·
∪ {diag(0, 0, z) | z ∈ C}

and X>0 is the disjoint union of a point and a line.
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Cooling down Implementation

• We have implemented part of our results in SageMath: with
input M ∈ GLn(C) our algorithm returns the equations of Xs.

• In some cases, our results suffice also to deal with X
non-cyclic. In general, we derive lower bounds.

Example
Define X = 〈A,B〉 where

A =
(

2 0
0 1

)
and B =

(
1 0
0 3

)
.

Then X contains as a subgroup Y =
{

diag(2h, 3h) | h ∈ Z
}
and

so X is a plane in C4.
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Cooling down Closing remarks

• Paul Görlach has shown in his PhD thesis (2020+) that, if X
is generated by diagonal matrices, then the irreducible
components of X are toric. Always true if X abelian?
• Work (2020+) of Majumandar, Ouaknine, Pouly, Worrel
shows that toric varieties pop up as invariants also in the
conext of linear hybrid automata. Properties?

• What happens if X is non-abelian?
• What happens over arbitrary fields?
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