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Getting started ) The problem 2N

The question

Given a finitely generated sub(semi)group X of Mat,,(C), what is
its Zariski closure in C"*?
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Getting started ) The problem 2N

The question

Given a finitely generated sub(semi)group X of Mat,,(C), what is
its Zariski closure in C"”? What are: dimension, degree, number of
irreducible components, ...?7

The motivation

® Polynomial equations provide the strongest algebraic
invariants.

® Membership problem: is x € X? If z ¢ X, then z ¢ X.
® Dynamical systems (= automata, affine programs).
Theorem: X is computable.
® X C GL,(C): Derksen-Jeandel-Koiran (2005),
Kauers-Zimmermann (2008)
e general: Hrushovski-Ouaknine-Pouly-Worrel (2018)
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Getting started ) The problem 2N

The question

Given a cyclic sub(semi)group X of Mat,,(C), what is its Zariski

. 2 . .
closure in C™? What are: dimension, degree, number of
irreducible components, ...?7

The motivation

® Polynomial equations provide the strongest algebraic
invariants.

® Membership problem: is x € X? If z ¢ X, then z ¢ X.
® Dynamical systems (= automata, affine programs).
Theorem: X is computable.
® X C GL,(C): Derksen-Jeandel-Koiran (2005),
Kauers-Zimmermann (2008)
® general: Hrushovski-Ouaknine-Pouly-Worrel (2018)
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Warming up ) An example A

We want to compute the algebraic closure of X in C* where

1

M = diag(—1,1/5) = <_0 195> and X = {Mk | ke Z}.
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Warming up ) An example N

We want to compute the algebraic closure of X in C* where

1

M = diag(—1,1/5) = <_0 ) andX:{MkH:GZ}.

0
1/5
We compute some powers:

M° = diag(1, 1), M*' = diag(—1,1/5),
M? = diag(1,1/25), M3 = diag(—1,1/(125)),
M~ = diag(1,25), M~ ! =diag(—1,5).
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Warming up ) An example /‘Q

We want to compute the algebraic closure of X in C* where

1

M = diag(—1,1/5) = <_0 ) andX:{Mk]kGZ}.

0
1/5
We compute some powers:

M° = diag(1, 1), M*' = diag(—1,1/5),
M? = diag(1,1/25), M3 = diag(—1,1/(125)),
M~ = diag(1,25), M~ ! =diag(—1,5).

Rewrite as:

X = {diag(1,5%) | k € Z} U {diag(~1,5%+") | k € Z} .

Xl X—l
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Warming up ) An example N

Recall:
= {diag(1,52k) | ke Z} U {diag(—1,52k+1) | ke Z}.
X1 X1
Then we get:
X=X UuX_; = { (21 2;) | 212 = x91 = 0,211 = +1, 299 € (C}
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Warming up ) An example N

Recall:

= {diag(1,52k) | ke Z} U {diag(—1,52k+1) | ke Z}.

X1 X1

Then we get:

YZEUX_l = { (xll $12> | Tio =x21 = 0,211 = 1,290 € (C}
21 T22

where the defining ideal is:

I = (SEH 1 1‘12,$21)

C Clz11, x12, T21, T22]
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The basics ) Setup 2N

M € Mat,(C)
G = (A€ C* | ker(M — \Id,) # 0) = Gior @ Z7K(E)
X~ - semigroup generated by M

X5 = {Mk | k positive integer}
e X - group generated by M € GL,(C)
X =(M)= {Mk | k integer}
e S - Zariski closure of § C Mat,(C) in C"

Our goal is to determine algebro-geometric properties of
X or X-.
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The basics ) Some properties

/ﬁ

Lemma
If M is invertible, then X = X~.

Recall: our warming-up example
with M = diag(—1,1/5).
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The basics ) Some properties A

Lemma
If M is invertible, then X = X~.

Recall: our warming-up example
with M = diag(—1,1/5).

For M invertible, write M ~ M M, with M, diagonal and M,
unipotent (Jordan normal form). Define then

X, ={MF|keZ}and X, = {MF | k € Z}

Lemma
If M is invertible, then dim X = dim X, + dim X,, and

irr(X) = irr(Xs).
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Results ) Invertible matrices /ﬁ

Theorem

Assume M € GL,(C). Then irr(X) = |Gior| and each irreducible
component of X is a toric variety of dimension

rk(G) if M is diagonalizable,

dim X =
rk(G) +1 otherwise.

Toric varieties from cyclic matrix groups | Mima Stanojkovski



Results ) Invertible matrices A

Theorem

Assume M € GL,(C). Then irr(X) = |Gior| and each irreducible
component of X is a toric variety of dimension

rk(G) if M is diagonalizable,

dim X =
rk(G) +1 otherwise.

Example

Let us look again at the matrix

~1 0
M_<0 1/5)'

Then M is diagonalizable and G = (—1,1/5) 2 Z/(2) ® Z. We
recover our two lines in C*.
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Results ) Invertible matrices 2N

Idea of proof
1. M = My, Gyor = 1 = X toric and dim(X) = rk(G).
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Results ) Invertible matrices 2N

Idea of proof
1. M = My, Gyor = 1 = X toric and dim(X) = rk(G).
If M = diag(3,1/3,9), then G = (3,1/3,9) = (3) = Z.
® Get matrix of exponents: A = (1 —1 2) € Mat, () xn(C).

® Compute kernel: kerz(A) = Z(1,1,0) & Z(—2,0,1).
® Derive equations: zy = 1 and 22 = z.
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Results ) Invertible matrices 2N

Idea of proof
1. M = My, Gyor = 1 = X toric and dim(X) = rk(G).
If M = diag(3,1/3,9), then G = (3,1/3,9) = (3) = Z.
® Get matrix of exponents: A = (1 —1 2) € Mat, () xn(C).

® Compute kernel: kerz(A) = Z(1,1,0) & Z(—2,0,1).
® Derive equations: zy = 1 and 22 = z.

2. M = My = X has |Gy toric comp.s with dim = rk(G).
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Results ) Invertible matrices 2N

Idea of proof
1. M = My, Gyor = 1 = X toric and dim(X) = rk(G).
If M = diag(3,1/3,9), then G = (3,1/3,9) = (3) = Z.
® Get matrix of exponents: A = (1 —1 2) € Mat, () xn(C).

® Compute kernel: kerz(A) = Z(1,1,0) & Z(—2,0,1).
® Derive equations: zy = 1 and 22 = z.

2. M = My = X has |Gy toric comp.s with dim = rk(G).
For ¢ = |Gior| define X; = {M’W ke Z}_ Then
X=XoU...UX, 1.
Conclude by observing

Xo — M?+— G? = (27| z € G) torsion-free.
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Results ) Invertible matrices A

Idea of proof

3. My, #1 = X, is a degree m — 1 rational normal curve where
m is the biggest size of a Jordan block of M.
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Results ) Invertible matrices 2N

Idea of proof

3. My, #1 = X, is a degree m — 1 rational normal curve where
m is the biggest size of a Jordan block of M.

Consider the matrix

1 10 1 a ala—1)/2
M=]0 1 1|~M*=1]0 1 «
0 01 0 0 1

satisfying x;; = 1,012 = @a3, 73> = 0.
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Results ) Invertible matrices 2N

Idea of proof

3. My, #1 = X, is a degree m — 1 rational normal curve where
m is the biggest size of a Jordan block of M.

Consider the matrix

ala—1)/2

1 10 1 «
M=]01 1|~M*=10 1
0 01 0 1

0
satisfying x;; = 1,212 = 223, ;> = 0. Define now

C—C3 te (1,t,t(t—1)/2) ~ (1,t,1%).
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Results ) Invertible matrices 2N

Idea of proof

3. My, #1 = X, is a degree m — 1 rational normal curve where
m is the biggest size of a Jordan block of M.

Consider the matrix
ala—1)/2

«

1 10 1 «
M=]01 1|~M*=10 1
0 01 0 1

0
satisfying x;; = 1,212 = 223, ;> = 0. Define now

C—C? te (Lt t(t—1)/2) ~ (1,t,12).

4. Conclude using lemmas.
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Results ) Comments A

Why is this exciting?
® Toric varietis are very well-understood and have a pleasant
combinatorial structure.
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Results ) Comments

Why is this exciting?
® Toric varietis are very well-understood and have a pleasant
combinatorial structure.
We can also realize each affine toric variety this way!
® We can read some geometric properties of X from the
Z-module structure of G.
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Results ) Comments /‘Q

Why is this exciting?
® Toric varietis are very well-understood and have a pleasant

combinatorial structure.
We can also realize each affine toric variety this way!

® We can read some geometric properties of X from the
Z-module structure of G.

Example

Let d be a non-negative integer and define

_(2 0 2
we 3 2)ec

Then X is a smooth irreducible affine curve of degree d and
equation y = z?. It is rational and, when d > 3, singular at infinity.
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Results ) Any matrix A

The last theorem can be generalized to non-necessarily invertible
matrices.
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Results ) Any matrix 2N

The last theorem can be generalized to non-necessarily invertible
matrices.

Example
Let M € Mat,,(C) be defined by

M: WM2:

o O O

1
0
0

N OO
o O O
o O O

0
0 | = diag(0,0,4).
4
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Results ) Any matrix 2N

The last theorem can be generalized to non-necessarily invertible
matrices.

Example
Let M € Mat,,(C) be defined by

M: WM2:

o O O
OO

1
0
0

o O O
o O O

0
0 | = diag(0,0,4).
4

Then Xso = {M} U {diag(0,0,2%) | k > 2}.
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Results ) Any matrix A

The last theorem can be generalized to non-necessarily invertible
matrices.

Example
Let M € Mat,,(C) be defined by
~ M2 =

M = = diag(0,0,4).

o O O

1
0
0

N OO
o O O
o O O
= O O

Then X~o = {M} U {diag(0,0,2%) | k > 2}. Since the closure of
{diag(0,0,2%) | k > 2} has dimension 1, we get that

Xoo={M} U {diag(0,0,2) | z € C}

and X~ is the disjoint union of a point and a line.
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Cooling down ) Implementation A

® We have implemented part of our results in SageMath: with
input M € GL,(C) our algorithm returns the equations of X.
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Cooling down ) Implementation A

® We have implemented part of our results in SageMath: with
input M € GL,(C) our algorithm returns the equations of X.

® |n some cases, our results suffice also to deal with X
non-cyclic. In general, we derive lower bounds.

Example
Define X = (A, B) where

2 0 10
A_<0 1) and B_<0 3>.

Then X contains as a subgroup Y = {diag(2h,3h) | h e Z} and
so X is a plane in C*.
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Cooling down ) Closing remarks

/%

® Paul Gérlach has shown in his PhD thesis (2020+) that, if X
is generated by diagonal matrices, then the irreducible
components of X are toric. Always true if X abelian?

® Work (2020+) of Majumandar, Ouaknine, Pouly, Worrel
shows that toric varieties pop up as invariants also in the
conext of linear hybrid automata. Properties?

® What happens if X is non-abelian?
® What happens over arbitrary fields?
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