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Codes Definitions and examples

Let M = (X, dist) be a metric space.

Definition. A code in M is a subset C of cardinality at least 2.

If C is finite, the minimum distance of C is

d(C) = min{dist(x, y) : x, y ∈ C, x ̸= y}.

Example. Examples of metric spaces used for applications are:
• M = (Rn, dist) with dist(a, b) = |a − b|

Euclidean metric
• M = (Fn

q , dist) with dist(v, w) = #{i : vi ̸= wi}
Hamming metric

• M = (Fm×n
q , dist) with dist(A, B) = rk(A − B)

Rank metric
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Codes Error-correcting codes

Transmitting a message through a possibly noisy channel:

m ∈ 𝕄 c ∈ E(𝕄) c + error c ∈ E(𝕄) m ∈ 𝕄

encode decodecorrection

We can interpret the situation as follows:
• M is a finite set – space of messages
• E : M → An is an injective map – encoding map

where A is a finite alphabet and n ∈ Z>0 is called length
• C = E(M) is the code
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Codes Error-correcting codes

. . . what do we need the length and distance for?

Example. If M = {no, yes} and C = {0, 1} ⊆ F1
2, then we are

pretty much hopeless for what concerns the correction of errors:
we can’t tell c = 0 apart from c′ = 1.
First solution: add redundancy through n ⇝ C = {0n, 1n} ⊆ Fn

2

Remark. We could have chosen a different encryption of M, but
this one maximizes the minimum distance!
Example. If n = 6 and c̃ = (0, 0, 1, 0, 0, 1) ∈ F6

2 is transmitted,
then it is easier to recover c if

C = {(0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1)}

than if we worked with

C′ = {(0, 0, 0, 0, 0, 1), (0, 0, 1, 0, 0, 0)}.
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Codes Error-correcting codes

In summary, we want that
• the length is sufficiently large, but also not too large (for

efficiency in transmission)
• the minimum distance of the code is large (so we can correct

errors).

Theorem (Singleton bound). If C ⊆ Fn
q is considered with the

Hamming metric, then

|C| ≤ qn−d(C)+1.

Remark. In order to have an efficient performance (storage,
encoding, decoding, . . . ), adding more structure might be
beneficial.
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Codes Linear codes

Definition. A code C in M = (X, dist) is called linear if X is a
vector space over some field F and C is an F-subspace of X.

Remark. If C is a linear code, then

d(C) = min{dist(x, 0) : x ∈ C \ {0}}

so going back to our original examples:
• d(C) = min{|x| : x ∈ C ⊂ Rn, x ̸= 0} Euclidean metric

• d(C) = min{#supp(v) : v ∈ C ⊂ Fn
q , v ̸= 0} Hamming metric

Singleton bound: dim C ≤ n − d(C) + 1
• d(C) = min{rk(A) : A ∈ C ⊂ Fm×n

q , A ̸= 0} Rank metric

Today we will focus on linear codes with the rank metric, also
known as rank-metric codes.
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Rank-metric codes Definitions

Let F be a (finite) field and let d, k, m, n be positive integers.

Definition. An [n × m, k, d]F rank-metric code is a linear
subspace C of Fn×m of dimension k and such that

d(C) = min{rk(A) : A ∈ C \ {0}} = d.

Theorem (Singleton-like bound).

k ≤ min{n(m − d + 1), m(n − d + 1)}.

Proof. Let π : Fn×m ∼= Fn×(d−1) × Fn×(m−d+1) → Fn×(m−d+1).
Then every A ∈ ker π satisfies rk(A) ≤ d − 1: so ker π ∩ C = {0}.
In particular π : C → Fn×(m−d+1) is injective.

Corollary. If m = n, then k ≤ n(n − d + 1).
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Rank-metric codes Motivation

Study of rank-metric codes motivated by linear network coding.
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Rank-metric codes Motivation

The information that gets carried into the Network is a subspace of
Fn. So we move to work with the Grassmannian

GrF(n) = {U subspace of Fn}

with the injection distance:

dI(V, W ) = 1
2(dimF(V + W ) − dimF(V ∩ W )).

If V, W ∈ GrF(m, n) = {U subspace of Fn, dimF U = m}, then
this rewrites as

dI(V, W ) = m − dimF(V ∩ W ).

Problem. The Grassmannian is not a linear code.
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Rank-metric codes Motivation

Each Grassmannian GrF(m, n) can be decomposed into Schubert
cells, corresponding to the possible pivots in a matrix
representation of its elements:

Gr{1,2}
F (2, 4) =

{
rowspanF

(
1 0 a b
0 1 c d

)
: a, b, c, d ∈ F

}

Gr{1,3}
F (2, 4) =

{
rowspanF

(
1 e 0 f
0 0 1 g

)
: e, f, g ∈ F

}

The largest cell Gr◦
F(m, n) corresponds to the pivots {1, . . . , m}.

Theorem (Silva / Kötter, Kschischang, 2008)

(Gr◦
F(m, n), dI) is isometric to (Fm×(n−m), drk).

Remark. Rank-metric codes had already been studied in the 70’s
by Delsarte and in the 80’s by Gabidulin.
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Rank-metric codes MRD codes

Definition. Rank-metric codes for which the Singleton-like bound
is tight

k = min{n(m − d + 1), m(n − d + 1)}

are called maximum rank distance (MRD).

Example. Assume that n = m, so that we seek k = n(n − d + 1).
• If d = 1, then k = n2 and C = Fn×n is an MRD code.
• If d = n, then k = n. E.g. if n = 3 and F = F2, then

C =

〈(
1 0 0
0 1 0
0 0 1

)
,

(
0 1 0
0 0 1
1 1 0

)
,

(
0 0 1
1 1 0
0 1 1

)〉
F

=

{(
a b c
c a + c b
b b + c a + c

)
: a, b, c ∈ F

}
is a [3 × 3, 3, 3]F rank-metric code, i.e. an MRD code.

Constructing MRD codes has been and still is an important
research problem!
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Rank-metric codes Skew algebras

A construction of Gabidulin for finite fields (later generalized by
Guralnick) goes as follows.

Assume F is finite and let L be a cyclic degree n extension of F,
with Galois group Gal(L/F) = ⟨σ⟩. Endowing

L[σ] =
{

n−1∑
i=0

aiσ
i : ai ∈ L

}

with the multiplication defined on monomials as

(aσi) · (bσj) = aσi(b)σi+j , for a, b ∈ L,

we have an F-algebra isomorphism:

L[σ] −→ EndF(L),
n−1∑
i=0

aiσ
i 7−→

(
α 7−→

n−1∑
i=0

aiσ
i(α)

)
.
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Rank-metric codes Skew algebras

Fixing a basis of L over F induces then an isomorphism

M : L[σ] −→ EndF(L) −→ Fn×n.

Taking 1 ≤ d ≤ n, the L-subspace

L[σ]n−d =
{

n−d∑
i=0

aiσ
i : ai ∈ L

}
⊆ L[σ]

has F-dimension n(n − d + 1) and every p(σ) ∈ L[σ]n−d satisfies:

dimF(ker p(σ)) ≤ deg p(σ) ≤ n − d

⇝ rk M(p(σ)) ≥ n − (n − d) = d.

So M(L[σ]n−d) is an [n × n, n(n − d + 1), d]F rank-metric code: in
particular an MRD code!
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Ferrers diagram rank-metric codes Motivation

. . . what if we wanted codes with a prescribed support?
For instance, what if we wanted our matrices to all be upper
triangular?

Example.

Gr{1,2}
F (2, 4) =

{
rowspanF

(
1 0 a b
0 1 c d

)
: a, b, c, d ∈ F

}

Gr{1,3}
F (2, 4) =

{
rowspanF

(
1 e 0 f
0 0 1 g

)
: e, f, g ∈ F

}

can be identically described by the 2 × 2 diagrams:
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Ferrers diagram rank-metric codes Definitions

Definition. A Ferrers diagram of order n is a subset D of
[n]2 = {1, . . . , n}2 such that

• (i, j) ∈ D and j′ ≥ j ⇒ (i, j′) ∈ D;
• (i, j) ∈ D and i′ ≤ i ⇒ (i′, j) ∈ D.

A given Ferrers diagram of orden n can be also represented as:

• a vector (c1, . . . , cn) where ci ≤ ci+1; or
• graphically as an n × n grid with dots corresponding to the

elements of D.
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Ferrers diagram rank-metric codes An example

Example. Let D ⊆ [5]2 be given by

D = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 4), (2, 5),
(3, 4), (3, 5), (4, 4), (4, 5), (5, 5)}

which can be graphically represented as

or as a vector by D = (0, 1, 1, 4, 5).

Ferrers diagram rank-metric codes & the Etzion-Silberstein conjecture 17 Mima Stanojkovski 17/38



Ferrers diagram rank-metric codes An example

Example. Let D ⊆ [5]2 be given by

D = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 4), (2, 5),
(3, 4), (3, 5), (4, 4), (4, 5), (5, 5)}

which can be graphically represented as

or as a vector by D = (0, 1, 1, 4, 5).

Ferrers diagram rank-metric codes & the Etzion-Silberstein conjecture 17 Mima Stanojkovski 17/38



Ferrers diagram rank-metric codes An example

Example. Let D ⊆ [5]2 be given by

D = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 4), (2, 5),
(3, 4), (3, 5), (4, 4), (4, 5), (5, 5)}

which can be graphically represented as

or as a vector by D = (0, 1, 1, 4, 5).

Ferrers diagram rank-metric codes & the Etzion-Silberstein conjecture 17 Mima Stanojkovski 17/38



Ferrers diagram rank-metric codes Isometries

Let D be a Ferrers diagram of order n and define

FD = {A ∈ Fn×n : (i, j) ∈ [n]2 \ D ⇒ aij = 0}.

Then D uniquely identifies a set of pivots P (D) of an n × 2n
matrix, so in particular:

Remark.

(GrP (D)
F (n, 2n), dI) is isometric to (FD, drk).

Example. If D = [n]2, then FD = Fn×n and we recover regular
rank-metric codes, i.e. the largest Schubert cell.
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Ferrers diagram rank-metric codes n = 2

Pivots
(

1 0 ∗ ∗
0 1 ∗ ∗

) (
1 ∗ 0 ∗
0 0 1 ∗

) (
1 ∗ ∗ 0
0 0 0 1

)

Diagram

Pivots
(

0 1 0 ∗
0 0 1 ∗

) (
0 1 ∗ 0
0 0 0 1

) (
0 0 1 0
0 0 0 1

)

Diagram
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Ferrers diagram rank-metric codes The example

Example. Earlier we looked at

with n = 5 and thus 2n = 10.

The corresponding Schubert cell is:

0
0
0
0
1

Column count: 6
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Ferrers diagram rank-metric codes The example

Example. Earlier we looked at

with n = 5 and thus 2n = 10. The corresponding Schubert cell is:

0
0
0
1

0
0
0
0
1

Column count: 7
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Example. Earlier we looked at

with n = 5 and thus 2n = 10. The corresponding Schubert cell is:
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0
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0
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0
0
0
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Ferrers diagram rank-metric codes The example

Example. Earlier we looked at

with n = 5 and thus 2n = 10. The corresponding Schubert cell is:

0 1 0
1

0
0
1

0
0
0
1

0
0
0
0
1

Column count: 10
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Ferrers diagram rank-metric codes Codes

Definition. Let D be a Ferrers diagram of order n. A [D, k, d]F
Ferrers diagram rank-metric code is an [n × n, k, d]F
rank-metric code C such that

A = (aij) ∈ C, akℓ ̸= 0 =⇒ (k, ℓ) ∈ D.

Equivalently, it is a linear subspace of FD of dimension k endowed
with the rank metric and with minimum distance equal to d.

Example.
• If D = [n]2, then regular rank-metric codes.
• If D = (1, 2, . . . , n), then the [D, k, d]F Ferrers diagram

rank-metric codes are [n × n, k, d]F rank-metric codes
contained in the space of upper triangular matrices.
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Ferrers diagram rank-metric codes Bounds

Theorem (Etzion, Silberstein, 2009)

k ≤ min
j=0,...,d−1


n−j∑
i=1

max{0, ci − d + 1 + j}

 = νmin(D, d).

Example. If D = (0, 1, 1, 4, 5) and d = 3, then

νmin(D, d) = min{2 + 3, 3, 1 + 1} = 2

i.e. it is the minimum number of dots remaining after the deletions:
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Ferrers diagram rank-metric codes MFDs

Conjecture (Etzion, Silberstein, 2009) Let D be a Ferrers
diagram of order n and d ∈ {1, . . . , n}. If F is a finite field, then
there exists a [D, k, d]F code C with k = νmin(D, d).

Definition. A a maximum Ferrers diagram (MFD) code is a
[D, νmin(D, d), d]F Ferrers diagram rank-metric code.

Example. Assume D = (1, 2, . . . , n). At the beginning of 2022
the existence of MFD codes had been proven for:

• d = 1 (easy)
• d = 2 (taking subspace with sum zero diagonals)
• d = 3 or d = n − 1 (Antrobus, Gluesing-Luerssen, 2019)
• |F| ≥ n − 1 (MDS-constructible pairs; Etzion, Gorla,

Ravagnani, Wachter-Zeh, 2016)

WE STARTED FROM HERE!
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• d = 1 (easy)
• d = 2 (taking subspace with sum zero diagonals)
• d = 3 or d = n − 1 (Antrobus, Gluesing-Luerssen, 2019)
• |F| ≥ n − 1 (MDS-constructible pairs; Etzion, Gorla,

Ravagnani, Wachter-Zeh, 2016)

WE STARTED FROM HERE!
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Our work The idea

Upper triangular matrices can be interpreted as the stabilizer in
Fn×n of the maximal F-flag

F : F0 = 0 < F1 = Fe1 < F2 = Fe1 ⊕ Fe2 < . . . < Fn = Fn

given by the standard basis.

Idea! Rely on Gabidulin’s construction and look for:
• a field extension F ⊂ L of degree n with Gal(L/F) = ⟨σ⟩,
• a maximal F-flag in L together with
• a subspace L[σ; D]n−d of L[σ]n−d of dimension νmin(D, d) st.

p(σ) ∈ L[σ; D]n−d =⇒ p(Fi) ⊆ Fi.

Tricky! Finding the right basis to work with.
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Our work The Modular case

Write p = char(F) and assume n = pm. Then:
• Let F ⊂ L be cyclic of degree n and Gal(L/F) = ⟨σ⟩.

• Define σ = σ − 1 ∈ L[σ].
• For each i ∈ {0, . . . , n}, let Fi = ker σi.

Then B = {σi : i = 0, . . . , n − 1} is an L-basis of L[σ] and

F0 = 0 < F1 = F < F2 < . . . < Fn = L

is a maximal F-flag of L.

Theorem (Neri, S., 2023+) Let D = (1, . . . , n). Then the
restriction of L[σ] → Fn×n induces an isomorphism

L[D; σ] =
n⊕

i=1
Fiσ

i −→ FD.
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Our work The Modular case

Write p = char(F) and assume n = pm.

Theorem (Neri, S., 2023+) Let D = (1, . . . , n). Then

L[D; σ]n−d = L[σ]n−d ∩ L[D; σ]
= {p(σ) ∈ L[D; σ] : deg p(σ) ≤ n − d}

is a [D, νmin(D, d), d]F Ferrers diagram rank-metric code.

Remark. This theorem holds with the more general assumption
that D = (c1, . . . , cn) is (p-)monotone:

0 < ci < n =⇒ ci+1 > ci.

In this case take: L[D; σ] =
⊕n

i=1 Fciσ
i.
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Our work Monotone pictures

D = (0, 0, 1, 3, 4), D = (1, 2, 3, 4, 5), D = (2, 3, 5, 5, 5), D = (0, 1, 4, 5, 5)

The first two Ferrers diagrams are (p-)strictly monotone:

0 < ci =⇒ ci+1 > ci.
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Our work Applications

Remark. If the Etzion-Silberstein conjecture holds for (D, d), then
it also holds for (D⊤, d) where

D⊤ = {(n + 1 − j, n + 1 − i) : (i, j) ∈ D}

Theorem (Neri, S., 2023+) Let F be a finite field of
characteristic p and let n = pm. Let D be a Ferrers diagram of
order n such that D or D⊤ is p-monotone and let 1 ≤ d ≤ n.
Then the Etzion-Silberstein conjecture holds for (D, d).
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Our work Applications

Remark. If D = (c1, . . . , cn) is strictly monotone, then
D′ = (0, c1, . . . , cn) is strictly monotone.

Idea! Embed FD into a larger FD′ with D′ of order n′ = pm.

Theorem (Neri, S., 2023+) Let F be a finite field and let
1 ≤ d ≤ n be integers. Let D be a Ferrers diagram of order n such
that D or D⊤ is strictly monotone. Then the Etzion-Silberstein
conjecture holds for (D, d).
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Our work Applications

Recall. If D = (1, 2, . . . , n), then the conjecture was proven for:
• d = 1 (easy)
• d = 2 (taking subspace with sum zero diagonals)
• d = 3 or d = n − 1 (Antrobus, Gluesing-Luerssen, 2019)
• |F| ≥ n − 1 (MDS-constructible pairs; Etzion, Gorla,

Ravagnani, Wachter-Zeh, 2016)

Definition. The pair (D, d) is MDS-constructible if

νmin(D, d) =
n∑

i=1
max{0, |D ∩ ∆n

i | − d + 1}

where ∆n
i = {(j, j + i − 1) : j ∈ [n − i + 1]}.
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Our work Our usual example

In this case n = 5 and, as before, take d = 3.

Recall that νmin(D, 3) = 2, while

νMDS(D, 3) =
5∑

i=1
max{0, |D ∩ ∆5

i | − 3 + 1}

= 0 + 1 + 1 + 0 + 0 = 2

so (D, 3) is MDS constructible.
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Our work Another example

Write νMDS(D, d) =
∑n

i=1 max{0, |D ∩ ∆n
i | − d + 1}.

d νmin(D1, d) νMDS(D1, d) νmin(D2, d) νMDS(D2, d)
2 4 4 12 10
3 1 1 7 6
4 0 0 3 3
5 0 0 1 1
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Our work Applications

Theorem (Neri, S., 2023+) Let F be a finite field and let
1 ≤ d ≤ n be integers. Let D be a Ferrers diagram of order n such
that (D, d) is an MDS pair. Then the Etzion-Silberstein conjecture
holds for (D, d).

Remark.
• The proof relies on the conjecture holding true for upper

triangular matrices.
• Our result does not ask for additional constraints on the field

size!
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Check out our preprint on arXiv: 2306.16407
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