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The project Arithmetic and convexity in buildings

Bruhat-Tits

Buildings

Representation Theory

Coding Theory

Tropical geometry

Main Goal: study orders via the collection of their stable lattices.
Related: spherical codes in buildings.
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The setting Discrete valuations

Let K be a field with a surjective valuation map

val : K → Z ∪ {∞}.

Denote
• OK = {x ∈ K : val(x) ≥ 0} is the valuation ring of K,
• mK = {x ∈ K : val(x) > 0} /OK unique maximal,
• π ∈ K such that val(π) = 1 is a uniformizer and mK = OKπ.

The valuation val can be extended to Kd or Kd×d coordinate-wise:

val3(2, 15,−1/36) = (0, 1,−2), for K = Q

valt

(
0 t−5 + t−1

−1/3 87t7 − t11

)
=
(
∞ −5
0 7

)
, for K = Q((t))
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The setting Lattices and orders

Definition.
• A (OK-)lattice in Kd is a free OK-submodule L of rank d.
• An order (in Kd×d) is a lattice Λ that is also a ring.
• A Λ-lattice is a lattice L with ΛL ⊆ L, i.e. L is Λ-stable.

Example.
• OdK is the standard lattice in Kd,
• OKG is an order in KG,
• the stable lattices of the order

Λ(J2) =
(
OK πOK
πOK OK

)
⊆ K2×2

are L(1,0)+α(1,1) = OKπ1+αe1 ⊕OKπαe2 for α ∈ Z and . . .
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• An order (in Kd×d) is a lattice Λ that is also a ring.
• A Λ-lattice is a lattice L with ΛL ⊆ L, i.e. L is Λ-stable.

Example.
• OdK is the standard lattice in Kd,
• if G is a finite group, then OKG is an order in KG,
• the stable lattices of the order

Λ(J2) =
(
OK πOK
πOK OK

)
⊆ K2×2

are L(1,0)+α(1,1) and Lβ(1,1) and L(0,1)+γ(1,1) for α, β, γ ∈ Z.
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The setting Stable lattices

Let Λ be an order in Kd×d and let L be a Λ-lattice. Then

• for each n ∈ Z, also πnL is Λ-stable.

L(1,0)+α(1,1) = OKπ1+αe1 ⊕OKπαe2 = παL(1,0),

L(0,0)+β(1,1) = OKπβe1 ⊕OKπβe2 = πβL(0,0),

L(0,1)+γ(1,1) = OKπγe1 ⊕OKπ1+γe2 = πγL(0,1).

• if L′ is Λ-stable, then so are L ∩ L′ and L+ L′.

Definition.
• Lattices with L′ = πnL are called homothetic, denoted L ∼ L′

• Lattices of the form Lu are called diagonal and all have
compatible bases
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Graduated orders The module ΛM

Let M = (mij) ∈ Zd×d. Then the set

ΛM = {X ∈ Kd×d : val(X) ≥M}

is an OK-module, thanks to the defining properties of val.

The study of graduated orders was pioneered by Plesken and
Zassenhaus (1983).

Remark.
• ΛM has maximal rank d2 as a free OK-submodule of Kd×d,

because the entries of M are integers.
• ΛM lives in a ring.

Question. When is ΛM multiplicatively closed?
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Graduated orders When ΛM is a ring

Example. For K = Q, d = 3, and val = valp:

valp
(

1 1 p
1 1 1
1 1 1

)
︸ ︷︷ ︸

X

=
(

0 0 1
0 0 0
0 0 0

)
︸ ︷︷ ︸

M

but

(
? ? 0
? ? ?
? ? ?

)
= val

(
2+p 2+p 1+2p

3 3 2+p
3 3 2+p

)
︸ ︷︷ ︸

X2

so ΛM is not a ring.

Example. M = 0⇒ ΛM = Od×dK is a maximal order in Kd×d.

Remark. Orders of the form ΛM are called graduated, tiled, split
or monomial by different authors.

Proposition (Plesken). ΛM is an order if and only if

mii = 0, mij +mjk ≥ mik for 1 ≤ i, j, k ≤ d.
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Graduated orders Stable lattices

Theorem (Plesken). A lattice L in Kd is stable under ΛM if and
only if there exists u ∈ Zd with

ui − uj ≤ mij for 1 ≤ i, j ≤ d,
such that L = Lu = OKπu1e1 ⊕ . . .⊕OKπuded. Moreover, two
stable lattices Lu and Lu′ are isomorphic as ΛM -modules if and
only if there exists n ∈ Z such that Lu′ = πnLu.

Example.
Here

M =

0 1 2
4 0 3
2 1 0


and dots represent eq.
classes of ΛM -lattices.
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Graduated orders Polytropes

Example.
Here

M =

0 1 2
4 0 3
2 1 0


and dots represent eq.
classes of ΛM -lattices.

Definition. QM = {[u] ∈ Rd/R1 : ui − uj ≤ mij} is a polytrope.

Theorem (Plesken). The following is a well-defined bijection:

QM ∩ (Zd/Z1) −→ {[L] : L is ΛM -stable}
[u] 7−→ [Lu]
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Graduated orders A tropical snapshot

With the following operations on R (which extend to Rd and Rd×d)

a⊕ b = min{a, b}, a⊕ b = max{a, b}, a� b = a+ b

we have the following tropical picture:

• ΛM is an order if and only if M �M = M

• Lu is a stable lattice if and only if M �ut ≥ ut

• Lu ∩ Lu′ = Lu⊕u′ and Lu + Lu′ = Lu⊕u′

Definition.
• Pd = {N ∈ Rd×d0 : N �N = N} is the polytrope region
• Pd(M) = {N ∈ Pd : N ≤M} is the truncated poly region

Then Pd is a (d2 − d)-dimensional convex polyhedral cone and
Pd(M) parametrizes subpolytropes of QM eq. overorders of ΛM .
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Graduated orders Tropical vertices

Definition. M ∈ Pd is in standard form if mij +mji > 0 (i 6= j).

Theorem. Let M ∈ Pd be in standard form. Then QM is both a
min-plus and a max-plus simplex. The min-plus vertices u are the
columns of M and represent Lu’s that are projective ΛM -modules.
The max-plus vertices v are the columns of −M t, and they
represent the injective ΛM -modules Lv.

Recall that

M =

0 1 2
4 0 3
2 1 0

 .
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Graduated orders Tropical vertices

Definition. M ∈ Pd is in standard form if mij +mji > 0 (i 6= j).
Theorem. Let M ∈ Pd be in standard form. Then QM is both a
min-plus and a max-plus simplex. The min-plus vertices u are the
columns of M and represent Lu’s that are projective ΛM -modules.
The max-plus vertices v are the columns of −M t, and they
represent the injective ΛM -modules Lv.

Here d = 4 and M = J4 has all 1’s outside the diagonal.
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Graduated orders Tropical balls

The tropical distance on Rd/R1 is given by

dist(u, v) = max
1≤i≤d

(ui − vi)− min
1≤j≤d

(uj − vj).

For each r ≥ 0, we have that Br(0) = QrJd
, where Jd ∈ Zd×d has

0’s on the main diagonal and all 1’s outside it.

B1(0) = QJ4B1(0) = QJ3
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Buildings Bruhat-Tits buildings

Definition. The Bruhat-Tits building Bd(K) is a simplicial
complex where:
• the vertices are equivalence classes of lattices in Kd,
• ([L1], . . . , [Ls]) is a simplex if L1 ⊃ L2 ⊃ . . . Ls ⊃ πL1

(up to reordering and picking representatives)

Remark. From the point of view of the building, looking at
diagonal lattices (eq. graduated orders) is the same as working in
one apartment A (compatible bases)
Remark. If Λ is an order, then Q(Λ) = {stable Λ-lattices} is
non-empty, convex, and bounded in Bd(K).

Question. What’s life like when you are not quarantined in one
apartment?
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Buildings The buildings gallery

An example for d = 2 and d = 3:

Bekker, Solleveld - The Buildings Gallery: visualising buildings (2021) 

More in the online gallery: https://buildings.gallery
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Balls in buildings The distance

For L1, L2 lattices in Kd, define

dist([L1], [L2]) = min{s | ∃L′1 ∈ [L1], L′2 ∈ [L2], πsL′1 ⊆ L′2 ⊆ L′1}
= min{s | ∃m with πsL1 ⊆ πmL2 ⊆ L1}

Then the following hold:
• dist agrees with the tropical distance in one apartment,
• if d = 2, then dist is the same as the graph distance.

For each r ≥ 0, define

Br = {[L] | dist([OdK ], [L]) ≤ r}

and, choosing the appropriate basis, note that Br ∩A = QrJd
. A

vertex of Br is an element of {P vertex of Br ∩A | A apartment}.
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Balls in buildings A ball in B2(Q2)

This is B5 inside of B2(Q2). Every boundary point is a vertex.
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Bolytrope orders Soft lockdown

A bolytrope with center QM ⊆ A and radius r ≥ 0 is

Br(M) = {[L] | dist([L], QM ) ≤ r}.

Then Br(M)∩A = QM+rJd

and we define a bolytrope order to be
an order of the form

Λr(M) = {X ∈ ΛM+rJd
| X11 ≡ . . . ≡ Xdd mod πr}.

Theorem. Q(Λr(M)) = Br(M).

Theorem. If d = 2, then all closed orders
are bolytrope orders.
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A connection to codes Spherical codes in buildings

Let r > 0 be an integer and define ∂ Br = Br \Br−1.
A spherical code in Bd(K) is a subset C ⊆ ∂ Br with |C| ≥ 2.

Spherical codes in the Euclidean setting can be defined from
sphere packings and have various applications in the field of
telecommunication.
In view of these applications, it is desirable to produce sizeable
codes of large internal distance and small length. Optimal codes
have the “best possible” coexistence constraints on these
parameters.
The minimum distance of C is

dist(C) = min{dist([L1], [L2]) | [L1], [L2] ∈ C, [L1] 6= [L2]}.
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A connection to codes Modules on the boundary

Define Vr = OdK/πrOdK – free OK/πrOK-module of rank d.

Then the following hold:

• Vr is a vector space if and only if r = 1,
• identify [L] ∈ ∂ Br with L ≤ Vr with πr−1Vr 6⊆ L 6⊂ πVr,
• vertices of Br represent free OK/πrOK-submodules of Vr.

In particular, spherical codes in Bruhat-Tits buildings are instances
of submodule codes over chain rings.

Definition. Gr(n, Vr) = {free OK/πrOK-subs of Vr of rank n}

Remark. If r = 1, then we recover the usual Grassmannian.
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A connection to codes Sperner codes

Definition. Let 1 ≤ α ≤ r. A Sperner code with parameters
(d, r, α) is C ⊆ Gr(dd/2e, Vr) such that the following is a bijection:

C −→ Gr(dd/2e, πα−1Vr), L 7−→ πα−1L.

The blue points form a Sperner code with parameters (2, 5, 3).
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A connection to codes Optimal codes

Theorem. Let 1 ≤ α ≤ r and let C ⊆ Br be a spherical code of
maximal size with dist(C) = 2α. Then
• |C| ≥ |Gr(dd/2e, Vr+1−α)|,
• if d = 2 or α = r, then |C| = |Gr(dd/2e, Vr+1−α)|.

In particular, Sperner codes are optimal if d = 2 or α = r.

Remark. Codes in one apartment generalize permutation codes. . .
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ArXiv identifiers: 2107.00503, 2111.11244, 2202.13370
And check out our Mathrepo page:
https:
//mathrepo.mis.mpg.de/OrdersPolytropes/index.html
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