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Introduction

Let G be a finite group. We say that G is an evolving group if for every prime
number p and for every p-subgroup I of G there exists a subgroup J of G
that contains I and such that |G : J | is a p-power and |J : I| is coprime to
p. The following theorem is the starting point of the whole paper.

Theorem A. Let G be a finite group. Then the following are equivalent.

1. For every G-module M , integer q, and c ∈ Ĥq(G,M), the minimum of
the set {|G : H| | H ≤ G with c ∈ ker ResGH} coincides with its greatest
common divisor.

2. For every G-module M and for every c ∈ Ĥ0(G,M) the minimum of the
set {|G : H| | H ≤ G with c ∈ ker ResGH} coincides with its greatest
common divisor.

3. The group G is an evolving group.

Section 1 is devoted to the proof of this result, which allows us to translate
a purely cohomological requirement in terms of a group theoretical problem.
We remark that condition (1) is inspired by a phenomenon that occurs in
Galois cohomology.

The following result is a simplified version of the main theorems given in
Sections 2 and 3.

Theorem B. Let G be an evolving group. Then G is supersolvable and it
is isomorphic to the semidirect product of two nilpotent groups of coprime
orders.

In Section 2 we investigate the main properties of evolving groups and define
some new concepts in order to prove that evolving groups are supersolv-
able. We show that the property of being evolving is inherited by normal
subgroups and quotients and we prove moreover that every evolving group
has a collection of Sylow subgroups satisfying a special condition. In Sec-
tion 2 we give also a second characterization of evolving groups that involves
supersolvability.

The aim of Section 3 is to give a concrete description of every evolving
group by means of a directed graph associated to the group. The second part
of Theorem B follows from the main theorem given in this section. We con-
clude the section and the paper by giving an example of an evolving group
with a non-evolving subgroup, which shows that the property of being evolv-
ing is not inherited by arbitrary subgroups. This example shows moreover
that the converse of Theorem B is not valid.
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1 Evolving groups

In this section we state and prove our first important result, which character-
izes the finite groups that satisfy a certain cohomological condition. Before
stating the theorem we give a new definition.

Definition 1. Let G be a finite group and let I be a p-subgroup of G, where
p is a prime number. If J is a subgroup of G containing I, for which |G : J |
is a p-power and p does not divide |J : I|, we say that J is a p-evolution of
I in G.

Theorem 2. Let G be a finite group. Then the following are equivalent.

1. For every G-module M , integer q, and c ∈ Ĥq(G,M), the minimum of
the set {|G : H| | H ≤ G with c ∈ ker ResGH} coincides with its greatest
common divisor.

2. For every G-module M and for every c ∈ Ĥ0(G,M) the minimum of the
set {|G : H| | H ≤ G with c ∈ ker ResGH} coincides with its greatest
common divisor.

3. For every prime p, if I is a p-subgroup of G, then I has a p-evolution J
in G.

We will start building the proof for this theorem for the case in which the
cocycles have order equal to a power of a prime. For this purpose we recall
here Corollary 4 from [1, Ch. 4] and emphasize that we will mostly refer to
Chapter 4 from [1] for the concepts concerning group cohomology.

Lemma 3. Let G be a finite group, let M be a G-module, and let q be an
integer. Let furthermore c be an element of Ĥq(G,M) and assume that, for

all Sylow subgroups S of the group, c restricts to zero in Ĥq(S,M). Then
c = 0.

In the previous lemma, it suffices to choose, for every prime number p, a
Sylow p-subgroup Sp of G and verify the hypothesis for the chosen family
(Sp)p. This is a direct consequence of the following result.

Lemma 4. Let G be a finite group, q an integer, and M a G-module. Let
moreover H be a subgroup of G and g be an element of G. Then there exists
a commutative diagram

Ĥq(G,M)
id−−−→ Ĥq(G,M)

ResGH

y yResG
gHg−1

Ĥq(H,M)
f−−−→ Ĥq(gHg−1,M)
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where f is an isomorphism of groups.

Proof. Let us consider the category C of compatible pairs defined in [5, Ch.1,
§6]. Let moreover F∗q : C → Ab be the map which sends any object (G,M) ∈
C to Ĥq(G,M) and any morphism (ϕ, ψ) : (G1,M1) → (G2,M2) to the

homomorphism (ϕ, ψ)∗q : Ĥq(G1,M1) → Ĥq(G2,M2) given by Proposition
2.2.3 in [4]. Thanks to Theorem 2.1.8 in [4], the map F∗q is a functor for
all q. Let us now consider the pairs (G,M), (H,M), (gHg−1,M) and the
morphisms that are collected in the commutative diagram

(G,M)
(ϕ,ψ)−−−→ (G,M)

(i,id)

y y(i,id)

(H,M)
(ϕ|gHg−1 ,ψ)

−−−−−−−→ (gHg−1,M)

where i denotes the inclusion of H in G and (ϕ, ψ) = (x 7→ g−1xg,m 7→ gm).
We now observe that (ϕ, ψ) : (G,M) → (G,M) is sent to the identity mor-
phism in Ab, thanks to Proposition 3 in [1, Ch.4] (dimension shifting ensures
the result for Tate groups), and the image under F∗q of our commutative dia-
gram preserves commutativity and isomorphisms because F∗q is a functor. To
conclude, we call f = (ϕ|gHg−1 , ψ)∗q and observe it is an isomorphism because
(ϕ|gHg−1 , ψ) is an isomorphism in C. The image in Ab of the diagram we
constructed gives us therefore the required commutative diagram.

Given a group G and a prime number p, we will denote by Sylp(G) the set
of all Sylow p-subgroups of G. We now state a partial result.

Lemma 5. Let G be a finite group, let M be a G-module, and let q be an
integer. Let moreover p be a prime number, c ∈ Ĥq(G,M) be of order a
power of p and assume every p-subgroup of G has a p-evolution in G. Then
the minimum of the set {|G : H| | H ≤ G with c ∈ ker ResGH} coincides with
its greatest common divisor and it is a p-power.

Proof. If l is a prime different from p and Sl ∈ Syll(G), then ResGSl
(c) is

annihilated by a power of l, but ResGSl
(c) is also annihilated by a power of p

and so the restriction of c to Sl must be zero. Let now Hp be a p-subgroup
of G such that ResGHp

(c) = 0 and the order of Hp is maximal; then by as-
sumption we can find a p-evolution Jp of Hp in G. The subgroup Hp is a
Sylow p-subgroup of Jp on which c vanishes and c is also zero restricted to all
Sylow subgroups of Jp associated to prime numbers different from p, because
they are Sylow subgroups of G. By Lemma 3, we have ResGJp(c) = 0. To
conclude, we show that the index |G : Jp| is the greatest common divisor of
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the set {|G : H| | H ≤ G with c ∈ ker ResGH} and so it equals its minimum,
too. Let us take H ≤ G such that ResGH(c) = 0; in particular, c restricts
to zero on every Sylow p-subgroup P of H. By the maximality of Hp, the
order of P divides the order of Hp and so, for every prime number q, the
quantity ordq |H| divides ordq |Jp|. It follows that the order of H divides the
order of Jp, in other words, |G : Jp| divides |G : H|. Moreover, since Jp is a
p-evolution of a p-group, its index in G is a power of p.

Thanks to this Lemma, it is now easy to prove that (3) implies (1) in Theorem
2. Given a group G, a G-set X and an element x ∈ X, we will denote by Gx
the orbit of x in X and by Gx the stabilizer of x in G. We will denote by
G\X the set of orbits in X with respect to the left G-action.

Lemma 6. Let G be a finite group and let H be a non-empty family of
subgroups in which every two elements have coprime index in G. Then
|G :

⋂
H∈HH| equals

∏
H∈H |G : H|.

Proof. Let us call K the intersection of all elements of H and let us consider
the map G/K →

∏
H∈HG/H defined by gK 7→ (gH)H∈H.The map is well

defined because K is contained in every H ∈ H. We now observe that two
elements gK and fK in G/K have the same image in

∏
H∈HG/H if and only

if, for every H ∈ H, the element f−1g belongs to H, which occurs if and only
if f−1g belongs to K. It follows that fK = gK and the map is injective, in
particular |G : K| ≤

∏
H∈H |G : H|. We now want to show that the reversed

inequality is true as well. By definition of K we know that |G : H| divides
|G : K| for all H ∈ H and therefore, since every two elements of H have
coprime index, the product

∏
H∈H |G : H| divides |G : K|. In particular,∏

H∈H |G : H| ≤ |G : K|.

Lemma 7. Let G be a finite group and let M be a G-module. Furthermore,
let q be an integer and let c ∈ Ĥq(G,M). Assume moreover that, for every
prime p, every p-subgroup of G has a p-evolution in G. Then the minimum
of the set {|G : H| | H ≤ G with c ∈ ker ResGH} equals its greatest common
divisor.

Proof. The group Ĥq(G,M) is an abelian group of exponent dividing the
order of G and therefore we can write uniquely c as

∑
p||G| cp where each cp

belongs to the p-primary component of Ĥq(G,M). By Lemma 5, for every
prime p, there exists a subgroup Jp ≤ G such that |G : Jp| is a p-power
and it is both the minimum and the greatest common divisor of the set
{|G : H| | H ≤ G with cp ∈ ker ResGH}. We now define L =

⋂
p||G| Jp and we

observe that ResGL(c) = 0; indeed each cp vanishes on Jp and so on
⋂
p||G| Jp,
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too. We now claim that |G : L| divides the index in G of every subgroup on
which the restriction of c vanishes. Let indeedK be a subgroup ofG such that
ResGK(c) = 0; in particular, for every prime p, we have that ResGK(cp) = 0.
It follows, for each prime number p, that |G : Jp| divides |G : K| and,
since Jp and Jq have coprime indices in G whenever p 6= q, we have that∏

p||G| |G : Jp| divides |G : K|. To conclude, by Lemma 6 we have that

|G : L| = |G :
⋂
p||G| Jp| =

∏
p||G| |G : Jp| and so |G : L| divides |G : K|.

To prove the other direction, we will work with a specific kind of G-modules,
which we introduce here.

Definition 8. Let G be a group and let X be a finite G-set. We define
M = ZX and we give it a left G-module structure by defining, for all f ∈ ZX ,
g ∈ G, x ∈ X, the G-action (gf)(x) = f(g−1x). We call M a permutation
module (over Z[G]).

Thanks to this construction we get that f ∈ H0(G,M) if and only if, for any
choice of x ∈ X and g ∈ G, it holds f(x) = (gf)(x) = f(g−1x). In particular
the group H0(G,M) of the G-fixed elements in M equals the set of functions
X → Z that are constant on each G-orbit.

Proposition 9. Let G be a finite group, X be a finite G-set and M the
permutation module associated to X. Then the map γG : Ĥ0(G,M) →⊕

Gx∈G\X Z/|Gx|Z defined by [f ] 7→ (f(x) mod |Gx|)Gx∈G\X is an isomor-
phism of groups. Moreover, if H is a subgroup of G, then the following
diagram is commutative

Ĥ0(G,M)
γG−−−→

⊕
Gx∈G\X Z/|Gx|Z

ResGH

y yπ
Ĥ0(H,M)

γH−−−→
⊕

Gx∈G\X
⊕

Hy∈H\Gx Z/|Hy|Z

where π is the projection map, which, restricted to each Gx-th direct sum-
mand, sends m mod |Gx| to (m mod |Gy|)Hy∈H\Gx.

Proof. The map γG is well defined; indeed if x ∈ X, φ ∈M and f ∈ H0(G,M)
then (f +

∑
g∈G gφ)(x) = f(x) + (

∑
g∈G gφ)(x) = f(x) +

∑
g∈G φ(g−1x) =

f(x)+
∑

Gxg∈Gx\G |Gx|φ(g−1x) ≡ f(x) mod |Gx|. Now it can be easily checked
that γG is a group homomorphism; let us check it is injective. Let f ∈
H0(G,M) be such that [f ] 7→ 0. This means that for all Gx ∈ G\X we have
that |Gx| divides f(x), i.e. there exists some φx ∈ Z such that f(x) = |Gx|φx.
Let us now choose a representative x for each orbit Gx and define φ : X → Z
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by sending x to φx and all other elements of its orbit to 0; we get that
[f ] = [(

∑
g∈G g)φ] = [0].

To show the map is surjective and that the above diagram is commutative
is an easy exercise.

From now on, to lighten the notation, we will identify every element c ∈
Ĥ0(G,M), for a fixed permutation module M , with its image under γG and
we will always consider its restriction to a subgroup H of G to be πγG(c).

Lemma 10. Let G be a finite group, let K be a subgroup of G and put
M = ZG/K. Let m ∈ Ĥ0(G,M) and let H be a subgroup of G. Then m is
zero restricted to H if and only if for all g ∈ G there is mg ∈ Z/|K|Z such
that |gKg−1 ∩H|mg ≡ m mod |K|.

Proof. Let m ∈ Ĥ0(G,M). By Proposition 9 the group Ĥ0(G,M) is isomor-
phic to Z/|K|Z and if H ≤ G, then ResGH(m) = 0 if and only if, for all g ∈ G,
there is mg ∈ Z/|K|Z such that |HgK |mg ≡ m mod |K|. To conclude we
observe that HgK = H ∩GgK = H ∩ gKg−1.

Lemma 11. Let G be a finite group and assume that, for every G-module M
and for every c ∈ Ĥ0(G,M), the minimum and the greatest common divisor
of the set {|G : H| | H ≤ G with c ∈ ker ResGH} coincide. Then for every
prime p and for every p-subgroup I of G there exists a p-evolution of I in G.

For the proof of this last lemma we need an auxiliary result.

Lemma 12. Let G be a finite group, let p be a prime number and let α ∈ Z≥0.
Let moreover I be a subgroup of G of order pα, let Sp be a Sylow p-subgroup
of G and let L = {L ≤ G | |L| = |I| and L 6= gIg−1 for all g ∈ G};
define M = ZG/Sp ⊕

(⊕
L∈L ZG/L

)
. Furthermore, let H be a subgroup of G

and define c = (m, (mL)L∈L) ∈ Ĥ0(G,M) by{
m = pα mod |Sp|
mL = pα−1 mod |L| for all L ∈ L.

Then ResGH(c) = 0 if and only if ordp |H| ≤ α and, if the equality holds, every
Sylow p-subgroup of H is conjugate to I in G.

Proof. By Proposition 9 we have that Ĥ0(G,M) ∼= Z/|Sp|Z⊕
(⊕

L∈L Z/|L|Z
)

and if α = 0 the collection L is empty. It follows that c is well defined and
if c = (m, (mL)L∈L) ∈ Ĥ0(G,M), then the subgroups for which it restricts to
zero are those for which each component restricts to zero. Now, by Lemma
10, we have that ResGH(m) = 0 if and only if, for all g ∈ G, the order of
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H ∩ gSpg−1 divides pα; in other words ResGH(m) = 0 if and only if ordp(H)
is at most α. If α = 0 we are clearly done, otherwise let us fix L ∈ L.
Then ResGH(mL) = 0 if and only if, for all g ∈ G, the order of H ∩ gLg−1
divides pα−1. If ordp |H| ≤ α − 1, this last condition is always satisfied; if
ordp |H| = α it occurs if and only if H does not contain any conjugate of
L. To conclude, we prove that, if ordp |H| = α then ResGH(c) = 0 if and
only if every Sylow p-subgroup of H is G-conjugate to I. In this case, by
intersecting all the conditions, we get that ResGH(c) = 0 if and only if, for
every L ∈ L, the subgroup H does not contain any G-conjugate of L; in
other words, since the Sylow p-subgroups of H have the same order as I and
L is the set of all subgroups of G that have the same order as I but are not
G-conjugate to it, the Sylow p-subgroups of H must be G-conjugate to I.

Proof of Lemma 11. Let p be a prime number and let I be a subgroup of
order pα for some α ∈ Z≥0; we want to construct a p-evolution J of I. Let
us fix a Sylow p-subgroup Sp of G and let L be as in Lemma 12. We want

indeed to construct a module M and a cocycle c ∈ Ĥ0(G,M) that give rise to
a p-evolution of I; a good choice is to define M = ZG/Sp ⊕

(⊕
L∈L ZG/L

)
and

get Ĥ0(G,M) ∼= Z/|Sp|Z⊕
(⊕

L∈L Z/|I|Z
)
. Let now c ∈ Ĥ0(G,M) be as in

Lemma 12. From that lemma, we know that ResGI (c) = 0, but the restriction
is not zero for subgroups of higher p-power order, and ResGSl

(c) = 0 for every
prime number l 6= p and for every Sl ∈ Syll(G). It follows that the greatest
common divisor of the set {|G : H| | H ≤ G with c ∈ ker ResGH} is pordp |G|−α

and so by assumption there is a subgroup J ′ with index |G : J ′| = pordp |G|−α

such that ResGJ ′(c) = 0. Moreover, J ′ does not contain any p-subgroup of
order pα which is not G-conjugate to I, thanks to Lemma 12. Hence, since
ordp |J ′| = α, there is some g ∈ G such that gIg−1 ≤ J ′; to conclude define
J = g−1J ′g.

Proof of Theorem 2. (1) ⇒ (2) Trivial. (2) ⇒ (3) Lemma 11. (3) ⇒ (1)
Lemma 7.

Definition 13. Let G be a finite group. We say that G is an evolving group
if it satisfies one of the equivalent conditions in Theorem 2.

2 The supersolvability of evolving groups

In this section we prove some important properties of evolving groups and
give a first characterization.
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Definition 14. Let G be a finite group and let P be the set of prime numbers
that divide its order. We say that (Sp)p∈P is a Sylow family of G if each Sp
is a Sylow p-subgroup of G and Sq normalizes Sp whenever q < p.

To lighten the notation, for every prime p dividing the order of G, when
(Sq)q∈P is a Sylow family, we will write Lp meaning 〈Sq | p < q〉 and Tp
meaning 〈Sq | q < p〉. It is an easy exercise to show that, if Q is a subset of
P , then the subgroup 〈Sq | q ∈ Q〉 has order

∏
q∈Q |Sq|. It follows that, if G

is a finite group with a Sylow family (Sp)p∈P , we have G ∼= Lp o (Sp o Tp).
We will write simply G = Lp o Sp o Tp.

We give here a short summary of the properties of Sylow families we will
use.

Definition 15. Let G be a finite group. Then G is supersolvable if it has a
series 1 = N0 ≤ N1 ≤ . . . ≤ Nt = G such that every Ni is a normal subgroup
of G and, for all i = 0, . . . , t− 1, the quotient Ni+1/Ni is cyclic.

Proposition 16. Let G be a finite group. Then the following hold.

1. If G is supersolvable, then G has a Sylow family.

2. If G has a Sylow family, then it is unique up to conjugation. In other
words, if (Sp)p∈P and (Rp)p∈P are two Sylow families then there exists
g ∈ G such that, for all p ∈ P, we have Rp = gSpg

−1.

Proof. We will work by induction on the order of G. If G is the trivial group
then P is empty and so we are done in both cases; we assume therefore G
is non-trivial. Let us first prove (1). Let p be the largest prime dividing
the order of G; since G is supersolvable, it has a unique normal Sylow p-
subgroup Sp (see [3, Ch.10, §5]). By the Schur-Zassenhaus theorem, Sp has a
complement Tp in G, which is isomorphic to G/Sp and so Tp is supersolvable.
By induction, Tp has a Sylow family (Sq)q∈P\{p}. By adding Sp to the Sylow
family of Tp, we get a Sylow family of G. Let us now prove (2). Let p be
the largest prime dividing the order of G; then G has a unique Sylow p-
subgroup, so Sp = Rp. Moreover T = 〈Sq | q < p〉 and T ′ = 〈Rq | q < p〉 are
complements of Sp in G; by the Schur-Zassenhaus theorem there is therefore
g ∈ G such that T ′ = gTg−1. Now (Rq)q<p and (gSqg

−1)q<p are Sylow
families of T ′ and so, by the inductive hypothesis, there is t ∈ T ′ such that,
for all q < p, we have Rq = (tg)Sq(tg)−1. The subgroup Rp is normal in G
and so Rp = (tg)Rp(tg)−1 = (tg)Sp(tg)−1.

Definition 17. Let p be a prime number and let S be a finite p-group. Let
moreover H be a finite group acting on S. We say that S has the correction
property with respect to the action of H if for every subgroup I of S there
is α ∈ S such that αIα−1 is stable under the action of H.
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We give here an equivalent definition of correction property of a group with
respect to a coprime action, i.e. an action of which the involved groups have
coprime orders. We will need the following auxiliary result from [2, Lemma
3.24].

Lemma 18 (Glauberman’s lemma). Let A and G be finite groups with co-
prime orders such that at least one of them is solvable. Assume A acts on
G and that each of them acts on some non-empty set X, where the action of
G is transitive. Finally, assume the three actions are compatible, i.e. for all
g ∈ G, a ∈ A and x ∈ X it holds a(gx) = (ag)(ax). Then there exists an
A-invariant element in X.

Lemma 19. Let p be a prime number and let S be a finite p-group. Let
moreover H be a finite group acting on S such that it has order coprime to
the order of S. Then the following are equivalent.

1. The group S has the correction property with respect to the action of H.

2. For every subgroup I of S and for every h ∈ H there is α ∈ S such that
h(I) = αIα−1.

Proof. (1) ⇒ (2) Let I be a subgroup of S and h an element of H. By
assumption we know there is α ∈ S such that h(αIα−1) = αIα−1. To
conclude we observe that h(αIα−1) = h(α)h(I)h(α)−1 and so h(I) and I are
conjugate in S.

(2)⇒ (1) Let I be a subgroup of S and let us defineX = {αIα−1 | α ∈ S}.
Then S acts transitively on X by conjugation; moreover, it follows from
the assumption that H acts on X, too. Now, since the two actions are
compatible, we get, by Glauberman’s lemma, that there is an element in X
that is fixed by H. In other words there is an element α in S such that αIα−1

is H-stable.

Definition 20. Let G be a finite group with a Sylow family (Sp)p∈P . We say
that G has the correction property if for every prime p ∈ P the subgroup Sp
has the correction property with respect to the action of Tp on Sp.

We observe that the definition of correction property does not depend on the
choice of the Sylow family of the group, thanks to Proposition 16.

We state here the main theorem of this second part and we will work,
through this whole section, in order to prove it.

Theorem 21. Let G be a finite group. Then the following are equivalent.

1. The group G is an evolving group.

10



2. The group G is a supersolvable group with the correction property.

One direction does not need any preparation, so we prove it immediately.

Lemma 22. Every supersolvable group with the correction property is an
evolving group.

Proof. Let us fix a prime p; we need to prove that every p-subgroup has a
p-evolution in G. The group G is supersolvable, so by Proposition 16 it has a
Sylow family (Sp)p∈P . Let now I be a p-subgroup of G; by the Sylow theorems
there is an element g ∈ G such that gIg−1 ≤ Sp. Now we recall that G has
the correction property and therefore there is an element α ∈ Sp such that
Tp normalizes αgI(αg)−1. We now define J̃ = Lp o (αgI(αg)−1 o Tp) and
observe that |G : J̃ | is a p-power and |J̃ |/|I| is not divisible by p. If we now
call J = (αg)−1J̃αg, then the order of J equals the order of J̃ and J contains
I. We conclude by observing that |G : J | = |G : J̃ | and |J : I| = |J̃ |/|I| and
hence the subgroup J is a p-evolution of I in G.

Lemma 23. Let G be an evolving group and let N be a normal subgroup of
G. Then both N and G/N are evolving groups.

Proof. Let I be a subgroup of N of order a power of p; we want to construct
a subgroup J of N satisfying the properties described in Definition 1. We
observe that I is a subgroup of G, which is evolving. There is therefore a
subgroup J ′ of G such that I ≤ J ′, the index |J ′ : I| is coprime with p and
|G : J ′| is a p-power. If we now define J = J ′ ∩N we get that I ≤ J and p
does not divide |J : I|, because |J : I| divides |J ′ : I|. Moreover we have that
|N : J | = |J ′N : J ′| and, by the normality of N , we know that |J ′N : J ′|
divides |G : J ′|. It follows that |N : J | is a p-power and so J is a p-evolution
of I in N .

Let us now choose I/N ≤ G/N , where |I : N | is a p-power, and let us
show there is a subgroup J of G containing N , such that J/N is a p-evolution
of I/N in G/N . Let us take Ip a Sylow p-subgroup of I. It is a p-subgroup
of G and so it has a p-evolution J in G. We now prove that J contains I
by showing that every Sylow subgroup of J contains a Sylow subgroup of I;
it will follow that J contains N , too. By definition of J , the subgroup Ip
belongs to Sylp(J) and to Sylp(I). Let now q 6= p be a prime number and
let Jq ∈ Sylq(J). Since the group J is a p-evolution of a p-group, Jq is a
Sylow subgroup of G. Now, by the normality of N , the subgroup Jq ∩ N is
a Sylow subgroup of N and it is also a Sylow subgroup of I because |I : N |
is a p-power. This completes the proof of I ≤ J . In conclusion, we show
that the condition on the indices is satisfied. By definition of J , the number
|J : Ip| is coprime to p and |G : J | is a p-power; moreover, by the isomorphism
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theorems, we have that |G/N : J/N | = |G : J | and |J/N : I/N | = |J : I|,
which divides |J : Ip|. The subgroup J/N is thus a p-evolution of I/N in
G/N .

We point out that an arbitrary subgroup of an evolving group is not in general
an evolving group. We will give a counterexample at the end of Section 3.
Meanwhile, we start laying the ground for proving that every evolving group
has the properties announced in Theorem 21.

Lemma 24. Let G be a non-trivial evolving group and let p be the largest
prime dividing the order of G. Then every Sylow p-subgroup of G is normal.

Proof. Let us work by induction on the order of G and let r be the smallest
prime dividing it. If p = r, the group G equals its Sylow p-subgroup and
therefore it is normal. We now consider the case p > r. Let R be a Sylow
r-subgroup of G and let T be a subgroup of index r in R. The group G is
evolving and so there is an r-evolution J of T in G; in particular J has index
r in G. The subgroup J is normal in G, since r is the smallest prime dividing
the order of G. Hence, by Lemma 23, it is evolving. By induction, there is
therefore a unique Sylow p-subgroup P in J , which is also characteristic in
J . In conclusion, since P is a characteristic subgroup of a normal subgroup,
it is normal in G.

Proposition 25. Let G be an evolving group. Then G has a Sylow family.

Proof. We will work by induction on the order of G. If G is the trivial
group then the statement is clearly true. Let now G be non-trivial and let
p be the largest prime dividing its order. By Lemma 24 the group G has a
unique Sylow p-subgroup Sp and by the Schur-Zassenhaus theorem Sp has
a complement Tp in G, which is isomorphic to G/Sp. Now, by Lemma 23,
the group G/Sp is an evolving group and therefore so is Tp. By induction,
Tp has a Sylow family (Sq)q∈P\{p} . We get a Sylow family for G by taking
(Sq)q∈P .

Lemma 26. Let G be an evolving group. Then G has the correction property.

Proof. If G is the trivial group, it has clearly the correction property; we can
thus assume G is non-trivial. Let first p be the largest prime dividing the
order of G and let us write G = SpoTp. Let moreover I be a subgroup of Sp;
we want to find an element α ∈ Sp such that Tp is contained in NG(αIα−1).
The subgroup I is a p-subgroup of G and so it has a p-evolution J . Moreover,
by an order argument, we have G = SpJ and Sp∩J = I, from which it follows
that I is normal in J . By the Schur-Zassenhaus theorem, I has a complement
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T in J , which is thus a complement for Sp in G, too. There is therefore an
element α ∈ Sp such that Tp = αTα−1 and hence αIα−1 is normalized by Tp.

Let now p be any prime number dividing the order of G and let us write
G = LpoSpoTp. The subgroup Lp is normal in G and SpoTp is isomorphic
to G/Lp; by Lemma 23 the group Sp o Tp is evolving. Now p is the largest
prime which divides the order of Sp o Tp and so we can conclude, as in the
previous case, that for every subgroup I of Sp there is α ∈ Sp such that Tp
normalizes αIα−1.

Lemma 27. Let G be a finite group with a Sylow family (Sp)p∈P . Assume
moreover that G has the correction property. Then G is supersolvable.

Proof. We will work by induction on the order of G. If G is the trivial group,
then G is supersolvable. Let us now assume G is non-trivial and let p be the
largest prime dividing the order of G. The Sylow p-subgroup of G is normal
and Tp has the correction property; by induction Tp is supersolvable. To
conclude it suffices to get a series of subgroups 1 = I0 ≤ I1 ≤ · · · ≤ Ir = Sp
which are normal in G and such that |Ij+1 : Ij| = p for every j ∈ {1, . . . , r}.
The subgroup Sp is supersolvable because it is a p-group and therefore it has
such a chain of normal subgroups in Sp. Let us now fix j ∈ {0, . . . , r}: by
assumption there is an element α ∈ Sp such that Tp normalizes αIjα

−1, but
Ij is normal in Sp and so Ij = αIjα

−1. The subgroup Ij is normalized by
both Sp and Tp and therefore it is normal in G.

Proof of Theorem 21. (2) ⇒ (1) Lemma 22. (1) ⇒ (2) Lemma 26 and
Lemma 27.

3 The structure of an evolving group

In this section we give a concrete description of every evolving group and
construct a directed graph describing the interaction between the elements
of an arbitrarily chosen Sylow family of the group.

Definition 28. A directed graph G is an ordered pair (V,A), where V and
A are sets respectively called the set of vertices and the set of arcs, together
with two maps s, t : A→ V . For any a ∈ A, we call s(a) the source of a and
t(a) the target of a.

Definition 29. Let G be an evolving group, let P be the set of primes divid-
ing its order and let (Sp)p∈P be a Sylow family of G. We define the graph
associated to G as the directed graph G = (V,A) where V = P and A =
{(p, q) | p, q ∈ V, p < q and the action of Sp on Sq/Φ(Sq) is non-trivial }.
The maps s, t : A→ V are defined by s(p, q) = p and t(p, q) = q.
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Definition 30. Let G be an evolving group, let P be the set of prime numbers
dividing its order and let G = (V,A) be its associated graph. We define the
subsets T , S and I of V as follows.

· The set T equals t(A) and its elements are called target primes.

· The set S equals s(A) and its elements are called source primes.

· The set I is the set of prime numbers belonging to P \ (T ∪ S), which are
called isolated primes.

We state here the result which gives us the structure of an evolving group by
means of its associated graph. We will use the symbol

∏
to denote a direct

product of groups.

Theorem 31. Let G be an evolving group and let (Sp)p∈P be a Sylow family.
Let moreover P, S, T and I be as in Definitions 29 and 30. Then

G =

(∏
p∈T

Sp o
∏
p∈S

Sp

)
×
∏
p∈I

Sp.

Corollary 32. Let G be an evolving group. Then G is the semidirect product
of two nilpotent groups of coprime orders.

The converse of Corollary 32 is not valid and we will soon give a counterex-
ample.

The proof of Theorem 31 will follow as a corollary of the following two
results.

Lemma 33. Let G be a non-trivial evolving group and let p be a prime
number dividing the order of G. Then F∗p is contained in Aut(Sp/Φ(Sp))
as the subgroup of scalar multiplications and the image of the action Tp →
Aut(Sp/Φ(Sp)) is a subgroup of F∗p.

Proof. Let us take p to be the largest prime number dividing the order of G
and let Sp be the unique Sylow p-subgroup of G; then the action of Tp on
Sp induces an action on the Fp-vector space V = Sp/Φ(Sp) and so clearly
F∗p ≤ Aut(Sp/Φ(Sp)). We will use the “bar convention” for subgroups of Sp
projected to the quotient Sp/Φ(Sp). By assumption G is an evolving group
and thus, by Lemma 26, it has the correction property. In other words for
every subgroup I of Sp we can find α ∈ Sp such that αIα−1 is normalized
by Tp. In particular, since V is abelian and αIα−1 = I, every subspace I
of V is stable under the action of Tp and therefore every single vector is an
eigenvector. Let us now fix f ∈ Tp and call λu the eigenvalue of a given
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u ∈ V \ {0} with respect to f . Let moreover v, w ∈ V \ {0} be two linearly
independent vectors (so in particular v+w 6= 0); we must have λvv+λww =
f(v) +f(w) = f(v+w) = λv+w(v+w) = λv+wv+λv+ww, because the action
of Tp is linear. Equivalently we have (λv − λv+w)v + (λw − λv+w)w = 0 and
so, since v and w are linearly independent, we get λv = λw = λv+w. If v
and w are linearly dependent they belong to the same eigenspace. It follows
that, for any choice of v, w ∈ V \ {0}, the two vectors must have the same
eigenvalue with respect to f and hence all the elements of V belong to the
same eigenspace; in other words applying f is the same as multiplying by the
common eigenvalue. Since the choice of f was arbitrary, every element of Tp
acts by scalar multiplication on V and so the image of Tp in Aut(Sp/Φ(Sp))
is equal to a subgroup of F∗p.

If p is an arbitrary prime number, we write G = LpoSpoTp. The group
Lp is normal in G and so, by Lemma 23, the group G/Lp is evolving and we
can apply the previous case to Sp o Tp.

Proposition 34. Let G be the graph associated to an evolving group G. Then
S and T have empty intersection, i.e. the graph has no consecutive arcs.

Proof. Let p, q, r ∈ P such that p < q < r and (q, r) ∈ A; we will show that
the action of Sp on Sq/Φ(Sq) is trivial. By Proposition 25 we have an action
of Sq o Sp on Sr, which induces an action on the Frattini quotient of Sr.
By Lemma 33 we write this last action as Sq o Sp −→ F∗r. We observe that
this is not the trivial map because of the choice of (q, r). We choose now
s ∈ Sq such that s does not map to the identity in F∗r and choose g ∈ Sp;
we have then, since F∗r is abelian, that [s, g] maps to 1. In particular, if we
call φq : Sq −→ F∗r the map identifying the action of Sq on Sr/Φ(Sr), then
gsg−1 ≡ s mod kerφq. Now, since the action of Sq on Sr/Φ(Sr) is non-trivial,
the kernel of φq is a proper subgroup of Sq and therefore so is the subgroup
L = (kerφq)Φ(Sq); moreover gsg−1 ≡ s mod L. It follows that Sq/L is a
non-zero quotient space of Sq/Φ(Sq) on which every eigenvalue equals 1. By
Lemma 33 we get that Sp −→ F∗q is trivial.

We observe that, in the case of an evolving group G with associated graph G,
the set {T ,S, I} is a partition of V thanks to the previous proposition. The
proof of Theorem 31 follows now directly from Corollary 3.29 in [2], which
we state here.

Lemma 35. Let A and G be finite groups such that gcd{|A|, |G|} = 1 and
A acts on G. If the induced action of A on the Frattini quotient G/Φ(G) is
trivial, then the action of A on G is trivial as well.
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As previously announced, we show here that arbitrary subgroups of evolving
groups are not in general evolving. Let p be a prime number greater or equal
than 3 and define the group

G =


h u v

0 1 w
0 0 h−1

 : u, v, w ∈ Fp, h ∈ F∗p

 ;

we claim that the group G is an evolving group and that its subgroup

W =


h u v

0 1 0
0 0 h−1

 : u, v ∈ Fp, h ∈ F∗p


is not evolving. First of all we call Heis(Fp) the subgroup of G in which
every entry of the diagonal is 1 and D the subgroup of G for which only the
entries in the diagonal are different from zero; we then observe that D acts
by conjugation on Heis(Fp) becauseh 0 0

0 1 0
0 0 h−1

1 u v
0 1 w
0 0 1

h−1 0 0
0 1 0
0 0 h

 =

1 hu h2v
0 1 hw
0 0 1


and moreover that G = Heis(Fp)oD. The subgroup W equals WHoD where
WH is the subgroup of Heis(Fp) with w-th entry equal to zero. We observe
that WH is an abelian p-subgroup of Heis(Fp) which has exponent p and
therefore Φ(WH) is trivial. The Frattini quotient of WH is thus isomorphic
to WH . We now compute−1 0 0

0 1 0
0 0 −1

1 1 1
0 1 0
0 0 1

−1 0 0
0 1 0
0 0 −1

 =

1 −1 1
0 1 0
0 0 1


and observe, since p is odd, that 1 6= −1 in Fp; in other words D does not
act by scalar multiplications on the Frattini quotient of WH and so W can’t
be evolving by Lemma 33.

We now show that G is an evolving group, assuming Theorem 21. We
notice that p is the largest prime dividing the order of G and that Heis(Fp)
is its unique Sylow p-subgroup; moreover D is abelian and therefore G has a
Sylow family. By showing that G has the correction property we will get it
is supersolvable (Lemma 27) and, since D is abelian, we only need to show
that given a subgroup I of Sp = Heis(Fp) there exists α ∈ Sp such that D
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normalizes αIα−1. It can be shown with an easy calculation that the centre
Z of Sp is

Z =


1 0 v

0 1 0
0 0 1

 : v ∈ Fp


and so in particular it has order p. The case in which I = {1} is trivial and
the case in which I contains Z is easy because Sp/Z is abelian; we assume
therefore I∩Z = {1} and I 6= {1}. Let us now call T = IZ and observe that,
since it contains the centre, T is normal in Sp and it is D-stable. We first
assume T 6= Sp. In this case T has order p2 and, since it is not cyclic, it has
exactly p+1 subgroups of order p: one is Z and we claim that the remaining
p are the conjugate subgroups of I in Sp. Indeed if I were normal in Sp,
which is a p-group, I would have non-trivial intersection with the centre.
We now observe that the subgroup D is isomorphic to the cyclic group F∗p
and therefore there exists h ∈ F∗p such that D = 〈Mh〉, where Mh is the
element of D associated to h. With this definition, Mh acts on Z by scalar
multiplication by h2 and in fact Z equals the eigenspace of h2. Moreover, h
is an other eigenvalue of T and, since p is an odd prime, the values h and h2

are distinct. Since the dimension of T as a vector space over Fp is only 2, we
can write T = Z ⊕ L, where L is the eigenspace of h in T . The subgroup L
is a D-stable subgroup of T and it is a complement of Z in T . Since the only
possible complements of Z in T are the conjugates of I in Sp, we are done.
To conclude, we show that the case T = Sp can never occur. Suppose indeed
by contradiction that T = Sp; then [IZ, IZ] = [Sp, Sp]. But [IZ, IZ] = [I, I],
because Z centralizes I, and [I, I] ≤ I. It follows that I must contain
[Sp, Sp] = [Heis(Fp),Heis(Fp)], which is equal to Z. Contradiction.

We remark that, from this example, it follows that the converse of Theo-
rem B in the Introduction is not valid. The group W is indeed a non-evolving
group which is however supersolvable and isomorphic to the semidirect prod-
uct of two nilpotent groups of coprime orders. The subgroups WH and D are
abelian (and thus nilpotent) subgroups and W is supersolvable because it is
a subgroup of the supersolvable group G.
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